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N U M E R I C A L  S T U D Y  OF T H E  L A M I N A R  

T H E R M O C A P I L L A R Y  F L O W  I N  A S Q U A R E  C A V I T Y  

V. A. Gaponov UDC 536.24 

The hydrodynamic and heat-transfer processes in the problem of a laminar thermocapillary 
]tow of a viscous incompressible fluid in a square cavity with isothermal vertical and isentropic 
horizontal surfaces are investigated numerically under the assumption that the gravity is absent, 
the free surface is fiat, and the surface tension depends linearly on the temperature. Calculations 
were performed by a compact-difference method on irregular grids with a fifth-order accuracy for 
four Prandtl numbers (Pr = 1, 16, 200, and 3000) as the Marangoni (Ma) number varies from 
102 to 104. The maximum local heat transfer versus the Ma number is obtained. It is shown that, 
for the Pr values considered, the maxima of the distribution of the horizontal velocity component 
on the surface is displaced to the cold boundary according to a law inversely proportional to the 
Ma number. 

I n t r o d u c t i o n .  Generally, the thermocapillary effect, which occurs at the free boundary of a 
nonuniformly heated fluid owing to the dependence of the surface-tension coefficient on the temperature 
(thermocapillary convection), does not show up as a dominating factor in ground conditions but accompanies 
a more strikingly expressed thermogravity convection, forming the thermal gravitational-capillary convection 
in combination with it [1-3]. The solution of the problems of thermocapillary convection is complicated by 
the fact that the value of the velocity along the surface is not known even in the simple case of a flat free 
surface; there is only a relation between its derivative on the normal to the surface and the derivative along the 
temperature tangent at the same point. Under these conditions, it is difficult to obtain reliable quantitative 
data on the local flow and heat-transfer characteristics, which are most important  in applied studies; an 
insufficiently accurate approximation of the boundary conditions at the surface can cause gross errors in local 
characteristics and affect considerably the general flow pattern. 

This study deals with the numerical modeling of thermocapillary convection under conditions in which 
gravity is absent (the theoretical zero gravity). The hydrodynamics and the heat transfer in the problem 
of a laminar thermocapillary flow of a viscous incompressible fluid in an open square cavity with isothermal 
vertical and isentropic horizontal surfaces are studied. It is assumed that the free surface is flat and the surface 
tension depends linearly on the temperature. The present study is motivated also by the circumstance that 
the results of [4, 5] and [6, 7] are inconsistent; however, this inconsistency has not yet been eliminated nor even 
discussed. For example, the distributions of the longitudinal velocity component at an open surface which 
were obtained for Pr = 1 and their evolution with increase in the Ma number differ significantly already at a 
qualitative level; the dependence of the flow structure on the Pr number is also interpreted differently. 

In the present study, the calculations were performed by a compact-difference method [8, 9] for Pr = 1, 
16, 200, and 3000 with variation in the Ma number from 102 to 104. The method was previously tested on 
the problem of a two-dimensional flow of a viscous incompressible fluid in a square cavity with a moving lid 
[9] and on the problem of a convective flow in a closed cavity [10]. The results of [10] allowed one to conclude 
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that the proposed method is capable of competing, in accuracy, with spectral methods and is more perfect 
than the second- and fourth-order finite-difference methods. 

F o r m u l a t i o n  of t h e  P r o b l e m .  The system of nonlinear equations of the thermocapillary convection 
in the Oberbeck-Boussinesq approximation, which describes the two-dimensional stationary convective motion 
of a fluid at zero gravity, can be presented in the following dimensionless form [4]: 

Ow Ow Pr 
u ~ z + v N =  M---~ V2w; (1) 

V2r = w; (2) 
OT OT 1 

u ~ x  + v Oy = Ma V2T" (3) 

Here the stream function r  y) is introduced by the relations u = O~b/Oy and v = -Or  w(x, y) is the 
velocity vortex determined by the relation w = Ou/Oy - Ov/Ox, and T(x,  y) is the temperature. 

The boundary conditions of the problem that we are interested in have the form 

0 r  T = 0.5 for x = O, r 1 6 2  T = -0 .5  for x = l, 
Ox (4) 

0r  OT r  ~y  O, Oy = 0  for y = 0 ,  r  02r OT OT 
= Oy 2 -- Ox' Oy = 0 for y = 1. 

The transition to dimensionless quantities is carried out using the following relations (the dimensional 
quantities are primed): 

T' - To T1 + T2 A T a T L  v 
T -  AT ' T 0 =  2 , A T = 7 " I - T 2 ,  M a =  #a ' P r = - a  

Here L is the side of the square cavity, U = (u, v) is the velocity vector, T1 and T2 (T1 > T2) are the 
temperatures of the hot (left) and cold (right) vertical rigid surfaces of the cavity, respectively, # is the dynamic 
viscosity, ~, is the kinematic viscosity, a is the thermal diffusivity, and cr T is the temperature coefficient of 
surface tension. 

N u m e r i c a l  M e t h o d .  A numerical solution of problem (1)-(4) is obtained by a fifth-order compact- 
difference method on irregular structured grids [9]. The principle of separate solution of the equations, the 
method of reaching the steady state, and the method of fractional steps are used. 

Compact Difference Approximations. Let there be a quite smooth function of one variable f ( x )  and 
fk = f ( xk ) ,  where k = 0, 1 , . . . ,  N, are its grid values. The compact difference approximations (with a separate 
approximation of space derivatives) rn k and Mk of the first two derivatives of the function f ( x )  at the point 
xk can be presented in the following operator form [8]: 

A~mk = (1 /hk)Bxfk ,  m k =  Lz f k ,  Lz = (1/hk)A-~lBz, 

= = = h 2 -1B A ~ M k  ( 1 / h ~ ) B ~ h ,  Mk L ~ h ,  L ~  (1/ k )A~ ~-  

Here hk = Xk+l - xk for all admissible values of k. The operators A~, Bz, Axz, and Bzz are determined, 
up to the normalizing factor, by its dimensionless coefficients, which can be directly obtained by various 
known methods,  for example, by the method of undetermined coefficients. Here we use compact differences 
constructed on a five-point irregular template. They link five values of the function and three values of the 
first- or second-order derivatives. Eight free parameters allow one to construct sixth-order approximations for 
the first-order derivative and fifth-order approximations for the second-order derivative. In the particular case 
of a uniform grid, the constructed approximations have the sixth order of accuracy and are reduced to the 
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known relations [11] 

Armk = ink-1 dr 3ink dr mk+l , 

AzzMk = 2Mk-x + l l M k  + 2Mk+l ,  

1 

B~:fk = ~ {--fk-2 -- 28fk-1 dr 28fk+l dr fk+2}, 

�9 3 
B z z h  = ~ { h - 2  + 1 6 h - 1  - 3 4 h  + 16h+ l  dr h+2}.  

Transfer Equations. In the case of Eq. (1), the splitt ing scheme for the transfer equations has the form 

= Pr  (Lzzwn+l/4 + Ly~w~) ' 2 (w'~+a/4 - wn) + u'~L~w" + vnLywn Ma 
At1 

= Pr (Lzzwn+l/2 + Lyyw"), 2 (w ~+1/2 - w ~) + u~L~w n+l/a + v"Lyw" Ma 
At1 

Pr (Lzzwn+l/2 jr . . . . . . .  ----~' L ta.) n+3/4"~ 2 (w,~+a/4 w"+x/2) + u"L~w'~+l/2 + v'*Lyw'~ Ma 
At l  yu J, 

Atx2 (wn+ 1 _ wn+l/2) + u"L~w"+l/2 + v"Lyw"+3/4 -- MaPr (L~wn+l/2 + Lyyw~+l). 

The scheme is conditionally stable and has the first order of approximation in time. 
The Poisson equation for the s t ream function (2) was solved according to the scheme 

2 (~)n+l,r+l/2 __ ~bn+l,r) = L z z ~ b n + l , r + l / 2  dr L y y ~ ) n + l , r  _ wn+l ,  
At2 

(r  _ r = Lzzr + Lyyr _ wn+l, 
At2 

where At2 is the  step in fictitious t ime and t2 = ra t2 .  The  scheme has the second order of approximation in 
time. 

Approximation of the Boundary Conditions. For the velocity vortex on a rigid surface, the 
approximation was carried out by a fifth-order explicit formula [9] which takes the following form in the 
case of the lower horizontal surface: 

18~02 1 (20ui,0 + 36ui,1 + 9ui,2). wi,o = (-247~bi,0 + 108~i,1 dr 135r + 4~bi,a) - ~ 0  

Here h0 = yl r-" y0 (r = ui,o = 0). 
In sweeping with a fractional step on the coordinate z, a technique which is conventional for the 

compact-difference method  is used: the  half-sum of the approximations corresponding to the nth  and (n + 1)th 
steps is used as the boundary condit ion for a velocity vortex. 

The presence of the free boundary  introduces specifics of its own into the formation of boundary 
conditions. For example, in a numerical  differentiation of the s t ream function with respect to the coordinate 
y we used the  scheme [9] 

1 
m0 + 6 m l  dr 3m2 : 3~0 (--10f0 -- 9 f l  Jr" 18f2 dr f3)  (m0 : 0, f0 = 0) 

to determine the  velocity component  u for a rigid boundary (the cavity bot tom)  and the scheme 

1 
= ~ (--4fN-3 -- 65fN-2 + 52fN-1 + 17fN) -- hN-1MN 17raN_2 + 28raN-1 2hN-1 

for an open surface. Here MN is the second-order derivative of the  s tream function on the normal to the 
surface in (4). The  desired velocity at the  boundary is determined by the scheme 

1 1 
mN = 12hN-1 (- -7fN-2 -- 16fN-1 + 23fN) -- ~ (mN-2 dr 8raN-1 -- hN-1MN). 

Solution of the Grid Equations. The  calculations are eventually reduced to a monotone five-diagonal 
scalar sweep for diffusion terms and a three-diagonal sweep for convective terms. In all cases, the strictly 
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diagonal dominance takes place. The coefficients of the  band matrices formed depend only on the grid 
parameters and do not change in passing from one t ime layer to another. This circumstance allows one 
to avoid multiple factorization of the matrices; the computing resources are spent mainly on the return sweep. 

In the calculations, rectangular irregular grids which expand to the center  and refine at the boundaries 
of the region and are uniquely determined by the expansion (concentration) coefficient are employed [9]. For 
a convenient approximation of the boundary conditions, the three near-boundary intervals on the normal to 
the boundary were taken to be equal to each other. The grid included 20 • 20, 40 x 40 and 60 x 60 ceils. In 
the latter case, the minimum step along the spatial coordinate decreased to h0 -- 0.00259, which corresponds 
to a 386 x 386 uniform grid. 

For Eqs. (2) and (3), the step over fictitious t ime was assumed to be constant: At2 ----- 0.2 and At3 = 0.1, 
respectively. For Eq. (1), the step for Pr = 1 (a 60 x 60 grid) varied from At l  = 0.0003 for Ma --- 102 to ~tz = 
0.03 for Ma --- 104. The iterations terminated when the condition maxi,/[~in, +a - w ~ j [ / m a x i , j  [win, j[ < r was 

satisfied. A typical value for r in the calculations was ~ = 10 -7. During iterations, in addition to characteristics 
such as the integral thermal flux in three vertical cross sections of the cavity (in the central cut and on the 
walls), which are standard for problems of this kind, local characteristics that  are most sensitive to the method 
of approximating the spatial derivatives were monitored. One of them is the temperature derivative OT/Ox 
at the point with coordinates (x -- 1, y = 1). After the iterations were completed, the local thermal balance 
in the cells, which was also calculated by the compact-difference method, was monitored. 

R e s u l t s  of  t h e  S o l u t i o n .  The integral Nusselt number that corresponds to the vertical cut x = C is 
denoted by Nuc: 

1 

i u c  = / Nu (C, y) dy, (5) 
0 

where Nu (C, y) = Ma (uT) - OT/Oxlx=c. The quanti ty Nu (C, y) is the local Nusselt number at the point 

with coordinates (C, y) which is connected with the same vertical cut. 
The calculations show that  the dependence of the flow structure and the heat transfer on the Pr 

number when it changes from 1 to 3000 is manifested most strikingly in the  interval 1 ~ Pr  ~< 16, weakens 
on the interval 16 <~ Pr <~ 200, and becomes negligible hereinafter: all the values of the flow and heat-transfer 
characteristics that we are interested in and were obtained numerically for Pr  = 3000 and differ from the 
corresponding values for Pr  = 200 in the fourth significant figure; consequently, they were excluded from 
further consideration. 

The solution of the problem is characterized by significant local tempera ture  and velocity gradients 
on the free surface, which are concentrated near the cold boundary as the Ma number increases. Figures 1-6 
give a qualitative idea of the  flow structure and indicate the presence of zones with significant temperature 
and velocity-field gradients and the evolution of the flow structure as the Ma and Pr numbers change. Figure 
1 shows the distribution of the  horizontal velocity component on the open surface for Pr = 1 and Ma = 102 
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103, and 104 (curves 1 and 3). One can see that, as the Ma number increases, the global maximum of the 
distribution is displaced to the cold boundary (cf. [4]). 

We shall trace the evolution of one of the flow regimes shown in Fig. 1 which corresponds to Ma = 104 
depending on the Pr number (curve 3). Figure 2 demonstrates the distribution of the same velocity component 
for Pr = 1, 16, and 200 (curves 1-3). Figure 3 shows the temperature distribution on the free surface, Fig. 4 
the local heat transfer along the vertical cold boundary, and Fig. 5 the horizontal velocity component in the 
vertical cut x = 1/2 for three flow regimes represented by the velocity distributions in Fig. 2. Figures 3 and 4 
indicate the presence of significant temperature gradients in the neighborhood of the point with coordinates 
(x, y) = (1, 1), where the fluid which moves along the surface and is not yet cooled, runs into the cold wall. 
The maximum of the local heat transfer is reached at the same point, i.e., Numax = Nu (1, 1), for all the Ma 
and Pr values considered. For adequate graphic representation of the distributions, a logarithmic scale is used. 

The local features of the convection heat transfer on vertical walls depend on the flow structure, which 
is, in turn, determined by the Pr number. For Pr = 1 and Ma = 102, the flow is weak and near-surface. With 
increase in the Ma number, the cooled fluid flow propagates farther and farther along the cold boundary and 
reaches the cavity bottom (curve 1 in Fig. 5); the center of the main vortex is displaced farther toward the 
geometric center of the cavity. In this case, as noted in [6], the evolution of the spatial flow structure relative 
to the Ma number is similar, in many respects, to the evolution of the flow in a cavity with a moving lid. 
The secondary and tertiary vortices develop in the lower corners of the cavity. The secondary vortices are 
shaped asymmetrically and evolve according to a complicated law: the right vortex increases monotonically, 
and the left first decreases in dimensions, reaching the minimum (in the width and height) for Ma ~ 3- 103; 
after this, its geometrical parameters begin to increase monotonically. The tertiary vortices are shaped more 
symmetrically (the width is equal to the height within two significant figures); evolving, they repeat the 
dynamics of the corresponding secondary vortices. It is noteworthy that, in this case, the secondary vortices 
do not affect the structure of the local convective heat transfer neither on the cold nor hot walls. 
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TABLE 1 

u(1/2, 1) Nu0 Nul/2 NUl w(0, 1) w(1, 1) 

1.0879.10 -1 1.0965 1.0965 1 .0965 0.7239 2.044 
1.0869-10 -1 1.0962 1.0962 1 .0962 0.7300 2.028 
1.0869-10 -1 1.0962 1.0962 1 .0962 0.7301 2.028 

Ma Grid size 

102 20 x 20 
40 x 40 
60 x 60 

103 20 x 20 
40 x 40 
60 X 60 
64 x 64 
64 x 64 

I04 40 x 40 
60 x 60 
64 x 64 

64 x 64 

4.9380.10 -2 
5.0007.10 -2 
5.0018-10 -2 

2.6855.10 -2 
3.0381.10 -2 

2.96.10-2"* 

1.9294 
1.9259 
1.9258 
1.92" 

4.4099 
4.3621 
4.32* 
4.36** 

1.9269 
1.9259 
1.9258 

4.2785 
4.3621 

4.33** 

1.9299 
1.9257 
1.9258 
1.93" 

4.4000 
4.3654 
4.34* 
4.40** 

0.9437 
0.9545 
0.9550 

.0"* 

2.2124 
2.2334 

2.4* 

12.32 
11.85 
11.75 
11.8" 

11.79"* 

67.53 
77.09 
60.2* 

/ 

Note. One and two asterisks refer to the data from [6] and [7], respectively. 

For Pr  = 16 and with increase in the Ma number to Ma = 104, the flow remains near-surface (curve 2 
in Fig. 5), and the center of the vortex is displaced in the direction of the hot wall; in practice, the secondary 
and ter t iary vortices in the lower corners are not changed in dimensions. 

An analysis of the structures of the longitudinal velocity component u(1/2,y) for large Ma values 
and various values of the Pr  number shows, that ,  already for Ma = 103, in the case of a high-viscous fluid 
(Pr >~ 16), one can observe an intense surface fluid flow from the hot to the cold wall and a near-surface 
return compensating (by virtue of the law of mass conservation) flow which affects little the fluid flow in the 
near-bot tom region. The global minimum for y ~ 0.3 is observed in a low-viscosity fluid (Pr = 1) on the 
same velocity profile, i.e., the fluid in the near-bottom region is involved in an intense compensating flow. The 
indicated position of the ex t remum on the structure of the longitudinal velocity component is well correlated 
with the position of the global maximum on the profile of the local convective heat transfer along the hot 
surface. 

Higher-Accuracy Solution. Some flow and heat-transfer characteristics of problem (1)-(4) for Pr = 1, 
which were borrowed from [6, 7], and the data  on the dependence of the solution that we obtained on the 
grid size used, are given in Table 1. For a more complete quantitative description of the flow considered 
and with a view to creating the conditions for objective testing of computing schemes, we expand this set 
of characteristics by introducing the values of the stream function at the center of the cavity, the maximum 
horizontal velocity component on the open surface, the ex t rema of the same velocity component in the vertical 
central cut,  the extrema of the vertical velocity component in the horizontal central cut, the dimensions of 
the secondary and tertiary vortices located in the lower corners of the cavity (H is the width and V is the 
height; the subscripts L and R refer to the left and right corners, respectively), the value of the velocity vortex 
at three points chosen on the surface, and the maximum local convective heat transfer on the hot vertical 
surface. The  main characteristics of the solution obtained for Pr = 1 on a 60 x 60 grid are shown in Table 2, 
where all the  located extreme characteristics are put into correspondence with their positions. 

Evolution of the Maximum of the Velocity Distribution along an Open Surface. A thorough analysis of 
the velocity distribution u(x, 1) for various Pr numbers allowed one to reveal the following interesting feature: 
although the  shape of the distribution depends on the Pr number (see Fig. 2), the position of its global 
maxima s reckoned from the cold boundary changes by a power law s = c.  (Ma) d with d = -0 .96 ~ - 1  as 
the Ma number  increases, i.e., it decreases in an inversely proportional dependence on the Ma value for all 
the Pr values considered. Figure 6 shows the results of s calculation for Pr = 1 and 16 (curves 1 and 2) and 
the dependence s = 20/Ma (curve 3). 

Parametric Approximations of the Convective Heat-Transfer Characteristics. The calculation results 
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TABLE 2 

Characteristic 

r 103 
{u~x(x, 1). 101; ~} 

{u,~(1/2, y). lO:; y} 
{u~.(1/2, y). lO3; y} 
{v~ (~ ,  1/2). lO3; x} 
{v,~,(~, 1/2). lO3; ~} 

102 

-6.005 
{12.24; 0.721} 
{10.87; 1.0} 

{-21.21; 0.537} 
{17.58; 0.230} 

{-2o.12; o.8oo} 

Ma 

10 3 

-2.833 
{9.021; 0.965} 
{5.002; 1.o} 

{-9.802; 0.518} 
{8.111; 0.228} 

{-9.811; 0.800} 

10 4 

-2.859 
{7.62; 0.996} 
{3.038; 1.0} 

{-8.613; 0.325} 
{7.766; 0.247} 

{-11.81; 0.844} 
{nL(2); VL(2)} �9 10 ~- 
{HR(2); VR(2)} �9 101 
{HL(3); VL(3)} �9 103 
{HR(3); VR(3)} �9 103 

~(o,1) 
w(1/2, i) 
w(1, 1) 

{Nuo,m~; y} 
Nuo 

Null2 
NUl 

{s.95; 9.07} 
{9.41; 9.64} 
{5.32; 5.32} 
{5.64; 5.65} 

0.7301 
0.7368 
2.028 

{1.223; 0.322} 
1.09616 
1.09616 
1.09616 

{8.60; 8.65} 
{10.7; 11.2} 
{5.07; 5.07} 
{6.55; 6.56} 

0.9550 
0.3142 
11.75 

{2.168; 0.520} 
1.9258 
1.9258 
1.9258 

{10.5; 9.66} 
{23.4; 29.5} 
{6.01; 6.01} 
{15.8; 15.8} 

2.233 
0.2852 
77.09 

{5.253; 0.409} 
4.362 
4.362 
4.365 

allow one to construct the parametric approximations of the integral convective heat transfer (Nuo) and the 
maximum local convective heat transfer (Numax) as a function of the Ma number on the interval 103 ~< Ma ~< 
104: 

Nuo = 0.17Ma ~ Numax = 0.034Ma TM, Pr = 1; (6) 

Nuo = 0.29Ma ~ Numax = 0.020Ma ~ Pr = 16; (7) 

Nuo = 0.31Ma ~ Numax = 0.013Ma ~ Pr = 200. (8) 

An analysis of the approximations (6)-(8) results in the following conclusion: a faster increase in Numax 
corresponds to a larger value of Pr, which affects the exponent of the resulting approximation. It is of interest 
that this fact is observed against the background of the relative decrease in the integral heat flux through 
a fluid layer: as the Pr number changes from 1 to 200, the exponent in the approximation Numax increases 
approximately from 4/5 to 1, whereas the corresponding parameter Nu0 decreases from 1/3 to 1/4. The 
directly proportional dependence of Numax on the Ma number correlates with the revealed specifics of the 
evolution of s; this dependence is manifested more and more strikingly as the Pr number increases (Fig. 6). 

Conc lus ions .  The local characteristics of a thermocapillary flow which is characterized by the presence 
of regions with relatively large local velocity and temperature gradients have been investigated ni~merically 
with high spatial resolution. The specifics which is common for all the flows considered (a medium with various 
vatues of Pr) has been established based on the calculation results. According to this specifics, the position 
of the maxima of the horizontal velocity component is displaced to the cold boundary with increase in the 
Ma number. A large temperature gradient arises near the cold wall (see Figs. 3 and 4); in this connection, 
the thermocapillary effect acts strongly; the fluid is accelerated, and not only the local but also the global 
maxima of the horizontal velocity component have been observed. Then a return descending flow is formed, 
i.e., the slowing down effect of the vertical wall into which the accelerated surface flow of the hot fluid runs 
into shows up. The local specific feature (the maximum) of the heat flux at the wall is due to this local feature 
of the flow. 

It follows from Table 1 that rough methods (a low-order approximation of spatial derivatives or an 
insufficiently refined grid) allow one to obtain the integral characteristics (Nu0 and Nul) with acceptable 
accuracy but result in great errors in determining the local characteristics: w(1, 1) ~ 60.2 [6] is underestimated 
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by more than 25%. Because the chain of equalities w(1,1) = -OT/Ox z=l,y=l = Nu(1, 1) is fulfilled by virtue 

of (4) and (5), the value of the local convective heat transfer at the contact point of the cold boundary and 
the open surface is underestimated by more than 25%. A comparison of the integral and local values of the 
convective heat transfer for Pr = 1 and the approximations constructed on their basis with known results [4, 
6] shows that the exponent for Numax in (6) is more than a quarter greater than the value 2/3 given in [6]; the 
quantity Numax = 52.1 that we obtained for Ma = 6400 is more than twice than the corresponding value in 
[4]. At the same time, both coefficients of the integral convective heat transfer in (6) coincide with the known 
result within two significant figures [4]. 

At the same time, Fig. 6 shows that this specifics imposes stringent requirements on the spatial 
resolution in numerical modeling. The high-accuracy solution given in Table 2 can serve as a test for the 
finite-difference and second-order finite-element schemes used in numerical modeling of the thermocapillary 
and thermal gravitational-capillary convections [4-7], for example, in various technological methods of crystal 
growth. 

The author thanks V. S. Berdnikov who attracted the author's attention to the problem for the 
discussion of the results of numerical modeling. 

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 96-01- 
01499). 
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